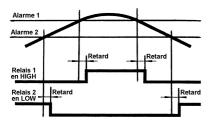

GSI 40 GUIDE DE PROGRAMMATION E03/12

1. Fonctionnement

1.1. Plage d'affichage

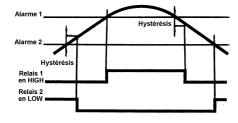
La définition de la plage d'affichage permet une mise à l'échelle du signal d'entrée pour obtenir une lecture dans l'unité désirée. Cela consiste à définir 2 points de mesure/affichage afin d'établir une relation proportionnelle entre la valeur du signal d'entrée et la valeur d'affichage.

Il est toujours préférable de choisir les 2 points de mesure/affichage aux 2 extrémités de l'évolution du signal pour obtenir la meilleure précision possible. Les coordonnées de ces 2 points peuvent être directement introduites au clavier ou par apprentissage en faisant correspondre à la valeur affichée une valeur mesurée par l'indicateur.

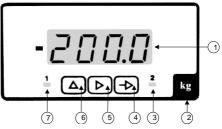

1.2. Sorties alarmes

L'indicateur dispose en option de 2 alarmes avec sorties relais. L'activation des sorties est programmable en mode HIGH, c'est-à-dire lorsque la valeur affichée passe le seuil dans le sens croissant ou en mode LOW, c'est-à-dire lorsque la valeur affichée passe le seuil dans le sens décroissant.

Le mode de fonctionnement des alarmes est également programmable :


a) Action retardée par temporisation

Le retard temporisé agit de part et d'autre du seuil d'alarme quand la valeur d'affichage passe par celui-ci dans le sens croissant ou décroissant. Ce retard est programmable en secondes de 0 à 99,9.



b) Hystérésis asymétrique

L'activation de la sortie est immédiate lorsque la valeur d'affichage passe par le seuil d'alarme ; par contre la désactivation de la sortie est effectuée après la bande d'hystérésis programmée en unités d'affichage de 0 à 9999.

2. Présentation clavier et affichage

N°	Désignation	Fonction RUN	Fonction PROG
1	AFFICHAGE	Zone d'affichage	e des données
2	ETIQUETTE	Emplacement pour co	ller l'étiquette d'unité
3	LED 2	Activation de la sortie 2	Program. alarme 2
4	тоисне —	Entrer en mode PROG	Sélection des lignes à programmer
5	TOUCHE >	Affichage des valeurs MIN et MAX	Sélection du digit à modifier
6	TOUCHE Δ		Incrémentation du digit sélectionné
7	LED 1	Activation de la sortie 1	Program. alarme 1

3. Consultation et programmation

Mode CONSULTATION

L'indicateur se trouve dans ce mode à la mise sous tension. C'est dans ce mode que l'on pourra consulter et modifier les valeurs des 2 seuils d'alarmes.

TOUCHE MAX/MIN

Chaque action sur cette touche fait apparaître successivement les valeurs MAX et MIN pour revenir ensuite à l'affichage de la valeur courante de la mesure. La valeur MAX ou MIN affichée peut être réinitialisée en maintenant la touche appuyée pendant 3 sec. Les valeurs MAX et MIN sont sauvegardées en cas de coupure secteur.

Mode PROGRAMMATION

Le mode programmation permet de configurer totalement le fonctionnement de l'indicateur. Il est divisé en 3 modules identifiés par un nom à l'affichage :

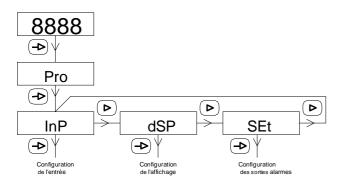
- InP configuration de l'entrée
- dSP configuration de l'affichage
- SEt configuration des sorties alarmes

L'accès au mode programmation, à un module de configuration et le défilement des différentes lignes à programmer s'effectue à l'aide de la touche — .

La sélection d'un module de configuration à programmer, d'une option de fonctionnement ou d'un digit à modifier s'effectue à l'aide de la touche .

L'incrémentation du digit sélectionné s'effectue à l'aide de la touche $\pmb{\Delta}.$

GSI 40 3


Mode opératoire

- 1° Appuyer une 1 ère fois sur la touche ->, le message [Pro] s'affiche. Appuyer une 2ème fois sur la touche pour passer à la sélection du module à programmer.
- 2° Sélectionner à l'aide de la touche le module à programmer, l'identification des différents modules est faite par un nom.
- 3° Valider par la touche le module sélectionné et programmer les différentes lignes à l'aide des touches ->, **Þ** et **Δ**.

Après la programmation d'un module, l'indicateur mémorise les modifications en affichant le message [Stor] pendant la sauvegarde, et quitte automatiquement le mode programmation.

4° Programmer s'il y a lieu les autres modules.

Synoptique d'affichage des modules de configuration

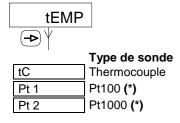
Le module de configuration des sorties alarmes n'est accessible que si l'indicateur est équipé de l'option correspondante.

1. Configuration de l'entrée

La première étape du module permet de sélectionner à l'aide de la touche l'un des différents sous-modules de configuration. Il est identifié par un nom.

ProC	Signal Process ou tension 200 VDC
tEMP	Signal Sonde Pt ou Thermocouple
Pot	Signal Potentiomètre
rES	Signal Résistance

1.1. Entrée Process



	Signal de process
- U -	Entrée en tension
- A -	Entrée en courant ± 0-20 mA (*

(*) Aucune programmation complémentaire n'est nécessaire pour l'entrée en courant

	Plage d'entrée en tension
10 U	Process 0 - 10 V
200 U	Tension 0 - 200 VDC

1.2. Entrée Température

(*) Aucune programmation complémentaire n'est nécessaire

pour l'entrée sonde Pt100 ou Pt1000, on passera directement à la programmation de l'unité d'affichage.		
Type de thermocouple		
- 1 - Thermocouple J		

- 1 -	Thermocouple J
- 2 -	Thermocouple K
- 3 -	Thermocouple T
- 4 -	Thermocouple N

	Unité et résolution d'affichage
1℃	Degré Celsius
0.1℃	1/10 de degré Celsius
1 ° F	Degré Fahrenheit
0.1 ° F	1/10 de degré Fahrenheit

Offset d'affichage		
0.00	Valeur programmable de -9,9 à +99 unités	
	d'affichage selon la résolution choisie	

L'offset d'affichage permet de compenser un éventuel décalage entre la valeur réelle et la valeur mesurée.

1.3. Entrée Potentiomètre

Aucune programmation complémentaire n'est nécessaire pour l'entrée potentiomètre

1.4. Entrée Résistance

4

Calibre de l'entrée Résistance

999.9	Calibre 999,9 Ω
9999	Calibre 9999 Ω
50.00	Calibre 50,00 kΩ

GSI 40

2. Configuration de l'affichage

La première étape du module permet de sélectionner à l'aide de la touche l'un des différents sous-modules de configuration. Il est identifié par un nom.

Le nombre et le type d'option de configuration de l'affichage accessible est fonction du signal d'entrée sélectionné à l'étape précédente.

Entrée Process

SCAL	Echelle mode clavier
tEAC	Echelle mode apprentissage
FiLt	Filtre de stabilisation

Entrée Température

|--|

Entrée Potentiomètre

tEAC	Echelle mode apprentissage
FiLt	Filtre de stabilisation

Entrée Résistance

CAL	Mode calibre (*)	
uSEr	Mode plage d'affichage	

(*) En validant cette option on passera directement à la programmation du filtre de stabilisation.

SCAL	Echelle mode clavier
tEACH	Echelle mode apprentissage
FILtP	Filtre de stabilisation

2.1. Plage d'affichage par clavier

InP₁ 0000

Valeur 1^{er} point de mesure

Valeur programmable de -9999 à 9999 pour les indicateurs avec digits de hauteur 14 mm ou valeur programmable de -1999 à 9999 pour les indicateurs avec digits de hauteur 20 mm

dSP 1	Valeur 1 ^{er} point d'affichage	
0000	Valeur affichée pour la valeur du signal	
	d'entrée définie à l'étape précédente, programmable de -9999/-1999 à 9999	

Point décimal de dSP1

Position du point décimal pour la valeur dSP1 définie à l'étape précédente

InP 2	Valeur 2 ^e point de mesure
0000	Valeur programmable de -9999/-1999 à
	9999

dSP 2 0000

Valeur 2^e point d'affichage

Valeur affichée pour la valeur du signal d'entrée définie à l'étape précédente, programmable de -9999/-1999 à 9999 ; la position du point décimal est fixée par le point décimal de la valeur du 1er point d'affichage

2.2. Plage d'affichage par apprentissage

tEAC

Valeur 1^{er} point de mesure InP 1 0000 La valeur du signal appliqué à l'entrée est prise en compte

dSP 1 0000

Valeur 1^{er} point d'affichage

Valeur programmable de -9999 à 9999 pour les indicateurs avec digits de hauteur . 14 mm ou valeur programmable de -1999 à 9999 pour les indicateurs avec digits de hauteur 20 mm

Point décimal de dSP1

Position du point décimal pour la valeur dSP1 définie à l'étape précédente

InP₂ 0000

0.000

Valeur 2^e point de mesure

La valeur du signal appliqué à l'entrée est prise en compte

dSP 2 0000

Valeur 2^e point d'affichage

Valeur affichée pour la valeur du signal d'entrée définie à l'étape précédente, programmable de -9999/-1999 à 19999 ; la position du point décimal est fixée par le point décimal de la valeur du 1er point d'affichage

2.3. Filtre de stabilisation

Valeur du filtre

Valeur programmable de 0 à 9 à l'aide de la touche >

Le filtre de stabilisation permet d'éviter des fluctuations non désirées de l'affichage. L'augmentation de la valeur du filtre se traduit par une réponse plus douce de l'affichage à des changements du signal d'entrée. La valeur 0 désactive le filtre de stabilisation.

3. Configuration des sorties alarmes

La première étape du module permet de sélectionner à l'aide de la touche l'un des différents sous-modules de configuration. Il est identifié par un nom.

SEt1	Seuil d'alarme n°
SEt2	Seuil d'alarme nº2

3.1. Seuil d'alarme n°l

5

Valeur du seuil

0000 Programmable de -9999/-1999 à 9999

Activation	du seuil	d'alarme	

Activation du seuil d'alarme		
Hi	Activation de la sortie en HIGH	
Lo	Activation de la sortie en LOW	

GSI 40

Etat au repos des sorties relais Normalement ouvert no Normalement fermé nc Mode de fonctionnement dLY Action retardée par tempo Hystérésis HYS Valeur de configuration 0000 Programmation du retard (dLY) de 0 à 99.9 sec ou de l'hystérésis (HYS) en points sur toute la plage d'affichage

3.2. Seuil d'alarme n^o2

Le principe de configuration est identique au seuil d'alarme n°1.

4. Programmation des seuils d'alarmes

Cette programmation est indépendante de la programmation des modules de configuration, elle peut être effectuée à tout moment.

Mode opératoire

- 1°Appuyer sur la touche ->, le message [Pro] s'affiche.
- 2° Appuyer sur la touche Δ pour accéder à la modification du premier seuil.

SEt 1	Alarme n⁴
0000	Valeur du seuil n , à modifier à l'aide des
	touches ▶ et ▲

3° Appuyer sur la touche → pour accéder à la modification du deuxième seuil.

SEt 2	Alarme n ²
0000	Valeur du seuil n ^o 2, à modifier à l'aide des
	touches > et \Delta

4° Appuyer sur la touche → pour valider les seuils programmés et retourner au mode consultation.

5. Contrôle d'accès à la programmation

Pour éviter toute modification involontaire de la programmation de l'indicateur, il est possible de protéger cette programmation :

- soit de façon totale.

Une fois la programmation verrouillée, il sera toujours possible d'accéder aux différents modules de configuration pour en vérifier le contenu. Dans ce cas le message [DAtA] sera affiché à la place du message [Pro] en entrant en mode programmation.

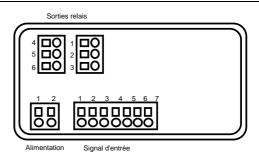
soit de façon partielle, en sélectionnant les modules de configuration à verrouiller. Une fois la programmation verrouillée, il sera toujours possible d'accéder aux différents modules de configuration pour en vérifier le contenu.

Mode opératoire

- 1°Appuyer sur la touche → pendant 3 sec, le message [CodE] s'affiche.
- 2° Saisie du code d'accès protégeant le module de co nfiguration du contrôle d'accès à la programmation. Le code d'accès usine est "0000".
 - Valeur à saisir à l'aide des touches ▶ et △
- 3° L'étape suivante de ce module permet de sélectio nner à l'aide de la touche l'un des différents sous-modules du contrôle d'accès à la programmation. Il est identifié par un nom.

LiSt	Liste des menus et sous-menus modifiables
CHAn	Modification du code d'accès
LISt	
\triangleright	
tLoC	Verrouillage programmation
no	Partiel : les sous modules peuvent être
	configurés indépendamment
YES	Total : l'indicateur mémorise l'option et
	quitte le mode programmation
SEt1	Configuration du seuil 1
SEt2	Configuration du seuil 2
InP	Configuration de l'entrée

Les lignes SEt1 et SEt2 n'apparaissent que si l'indicateur est équipé de l'option sorties alarmes.


Configuration de l'affichage

Code d'accès

Si l'on modifie le code d'accès, l'indicateur mémorise ce code et quitte le mode programmation.

6. Raccordement

Alimentation

Version	VAC	VDC
Borne 1:	phase	-
Borne 2:	neutre	+

Signal d'entrée

Borne 1:

Entrée PROCESS

IN - / Excitation -NC Borne 2: NC Borne 3: NC Borne 4: 20mA IN+ Borne 5: Excitation +24V Borne 6: 10V / 200V IN+ Borne 7:

Entrée Pt 100

Pt100 Commun / Pt1000 Borne 1:

Pt100 / Pt1000 Borne 2:

Borne 3: NC Pt100 Borne 4: NC Borne 5: NC Borne 6: Borne 7: NC

6 **GSI 40**

⇒ Entrée THERMOCOUPLE

Borne 1 : Thermo Borne 2 : Thermo +
Borne 3 : NC
Borne 4 : NC
Borne 5 : NC
Borne 6 : NC
Borne 7 : NC

⇒ Entrée POTENTIOMETRE

Borne 1 : Potentiomètre LO
Borne 2 : Potentiomètre milieu
Borne 3 : Potentiomètre HI

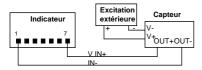
Borne 4 : NC
Borne 5 : NC
Borne 6 : NC
Borne 7 : NC

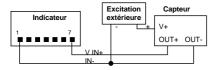
⇒ Entrée RESISTANCE

Borne 1 : R commun Borne 2 : IN R $1k\Omega$ - $10k\Omega$ Borne 3 : IN R $50k\Omega$

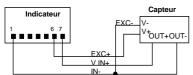
Borne 4 : NC
Borne 5 : NC
Borne 6 : NC
Borne 7 : NC

• Sorties alarmes

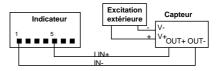

⇒ Option 2 relais


Exemples de raccordements

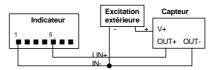
⇒ Entrée PROCESS en tension


Capteur 4 fils et excitation extérieure

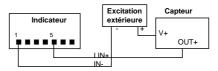
Capteur 3 fils et excitation extérieure

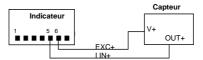


Capteur 4 fils



⇒ Entrée PROCESS en courant


Capteur 4 fils et excitation extérieure

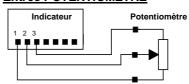

Capteur 3 fils et excitation extérieure

Capteur 4-20mA à 2 fils et excitation extérieure

Capteur 4-20mA à 2 fils

<u>Remarque</u>: dans cet exemple de raccordement c'est l'indicateur analogique qui alimente la boucle de courant.

⇒ Entrée SONDE Pt100


⇒ Entrée SONDE Pt1000

⇒ Entrée THERMOCOUPLE

⇒ Entrée POTENTIOMETRE

⇒ Entrée RESISTANCE 10kΩ

GSI 40 7